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N U M E R I C A L  M E T H O D  O F  S O L V I N G  T H E  P R O B L E M  O F  T H E  

C O N T A C T  O F  AN E L A S T I C  P L A T E  W I T H  AN O B S T A C L E  

V .  A .  K o v t u n e n k o  UDC 539.3+519.6 

This article examines the classical variational inequality describing the problem of the contact of an elastic plate with 

a rigid obstacle. Iteration methods of approximating the inequality with the use of a penalty operator are presented and the 
convergence of the solutions is demonstrated. The finite-element method is constructed for the proposed iterative scheme and 

is shown to converge. Finally, an example of numerical solution of the problem by the given method is presented. 

Formulation of the Problem. Let f C R 2 be a finite region with a smooth boundary Off. The functions ~, E C2(f) 
(so on Oft is less than zero) and fE  L2(f) are assigned. We need to find the function w E K~, where 

K = {wEH2o(f2)/w >-%a s f2}, 

satisfying the inequality [1, 2] 

(Aw, ao  - Aw) >~ (/,~, - w) V ~, ~ K .  (1) 

Here, the parentheses (.,.) denote a scalar product in L2(f). The given model describes the problem of finding the function 
w characterizing the transverse deflection of a plate lying in f and fixed along the edges when under the influence of a rigid 

obstacle so and an external load f. 
We introduce the penalty operator 

fl(w) = {~, '_ ~o, w < >~ ~'  

and define the penalty problem with the parameter e > 0 in the form 

A2w " + e-lf l(w ") = /; (2a) 

w ' =  ~ = 0 on Of~, (2b) 

where the subscript J, denotes a derivative with respect to an outer normal to the boundary. Proof for the following result was 
given in [3]. There exists a unique solution w ~ E H 20(f) to problem (2): 

v/"~w weakly in Iarl(~) at e~0 

(w E K~, is a unique solution to problem (1)). 

Approximation of the nonlinear scheme. We will fix ~ and examine the iterative procedure proposed in [4]: 

A2w*'~*I + e-lK(w~a) ( w*'~+l - T) = f;  

w,,,§ = ~ , §  = 0 on 0fL 

(3a) 

(3b) 
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Here,  n = 0, 1, 2 . . . .  ; w e,0 E H2o(f]) is an arbitrary function; 

0, w >~ ~o, 
K(w) = 1, w < ~ , .  

It can be shown that the problem has the solution w e,n+l G H02(fl ) [5]. 

T h e o r e m  1. Let  ~ E H02(fl). Then w e,n+l  ---, w e weakly  in HO2(~) at n---  oo. 

Proof.  We  mult iply (3a) by w e,n+l - ~o and integrate over f~. Using boundary conditions (3b) and ~o = ~ov = 0 on 

0fl, we obtain 

II Aw~'' II~ + ~-' f K(w") (W "§ - ~)~dx = (f,W "~§ + (LxW ~''=', a~o). 

Having discarded the positive integral and using Holder ' s  inequality, we f'md an estimate that is uni form with respect  to n 

It follows from the ref lexive nature of H2o(f0 that there exists a sequence such that the following is val id  (here,  we use the 

same notation as previously)  

W~'-~U ~ weakly in H2o(~) at n~oo. (4) 

We rewri te  (3a) in the form 

A2W ' ' + '  + ,~-lfl(w~") = f + e - ' K 0 d "  ) (w"" - w ' ' '+ ' )  

and pass to the limit for n. Using (4) and taking advantage of  the continuity of  the penalty operator  and the finiteness of 

K(we,n), we obtain 

~:u" + e-~[3(li'). = f. 

It follows f rom the uniqueness of  the solution of  problem (2) that u e = w e, which proves the theorem. 

A p p r o x i m a t i o n  of  the  L i n e a r  Scheme .  We will construct an iterative procedure for n = 0, 1 . . . .  and the arbitrary 

function w e,~ E H2o(fl): 

A 'W ~+' + e-~r = r + e-~(w ' '  -- fl(w~")); 
rC~+t = ~4/,+1 = 0 on 0f~. 

(5a) 
(5b) 

It is easily shown that the problem has the solution w e,n+l E H20(fl). 

T h e o r e m  2. w e,n --, w e strongly in H20(fl) at n --, ~ .  w e,n --- w e strongly in H20(fl) at n --, oo. 

Proof.  We  write Eq. ((5a) for the preceding step with respect to n, subtract it f rom (5a), mult iply the resulting equation 

by w e,n+l - w e,n, and in te~a te  over ft. Using boundary condition (5b), we have 

- /~( , r  + r -§ - w %  

The following estimate is valid for the penalty operator 

I s ' -  s ~ - ~(s:)  -f l [s~))l  ~ I s : -  s~l Vs:, s~ /~( f2 ) .  

(6) 

Then employing Ho lde r ' s  inequality and the estimate Ilsll~2 ~< cllsll~ v s ~ H2o(Ca), we use (6) to fred 
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I lzX~ ''*~ - ,aw' ' l l~  + e-~l l  w'''+~ - ~'11~0 ~ , o ( l l A w "  - A w ' ' - ' i l ;  

+ e- t l l  w ' '  - 'r 

= (1 + 2ce)(l + e / c )  < 1 . 

Thus, by virtue of the convergence of a geometric series with exponent ~'p, there exists an element u e E H20(9) such that 

w~'~U" weakly in H20(~) at n~oo. (7) 

We pass to the limit in (5a) at n --- oo. Using (7) and the continuity of the penalty operator, we obtain proof of  the theorem. 

Finite Element Method for the Linear Scheme, The difficulty in numerically solving fourth-order linear system (5) 

lies in the presence of the second Neumann-type boundary condition. There are several studies (see [6, 7], for example) in 

which this boundary condition has been approximated in terms of boundary values of second derivatives, which makes it 

possible to reduce the given problem to a sequence of second-order problems. One difficulty that arises with this approach, 

however, is determining the spur of the second derivatives on the boundary. Here, we propose approximating the sought 

functions by high-degree polynomials. 

We place a square mesh flh into fl, this mesh consisting of squares of the dimension h > 0. We require that 

mes(f2 \ ~h) "" 0 at ~ h "-, 0. 

We designate the internal nodes 9 h as x r (r = 1 ..... N(h)). We determine the basis functions UriJ(xl, x 2) E H02(f0 (i, j = 0, 

1, r = 1 . . . . .  N(h)) by means of  third-degree polynomials in x 1 and x 2 so that a) the carrier Ur ij lies in squares having x r as 

a vertex and b) the following relation is satisfied at each point x r 

g a m 
a~  1 a . r  ~ = 6'P'J' l, j,  t, m = 0, 1. 

We then use Galerkin's method. We use X h to designate the subspace H20(9) stretched over the base functions UriJ. Then any 

element v E Ho2(f]) 1"3 C3(f~) can be approximated by the sequence v k E X h, which converges strongly in H2o(fl) as h ~ 0. 

Let f E Hl(fl). Then the solution of problem (5) belongs to the class H20(fl) n C3(fl). We can therefore find the solution 

Whe'n+l E X h of the equation 

(A~ ,  ' "§ AU,,) + ~ - ' (~ ' "+~ ,  u,,) = (.t', u,,) + ~ - ' ( ~ ' "  -- E.(W"") ,  u,,) V ,.,,, e x , .  (8) 

Here, it may be necessary to smooth the penalty operator - -  as shown in [8] - -  so that fl(v) E CI(I2). Now we can prove the 

following resuk: 

T, Ch~,§ ~ ~,,/~,*1 weakly in H~(~) at h ~ 0. 

Having inserted ~ = Whr,n+l into (8) in place of  the test function, we obtain a system of algebraic equations to search for 

the coefficients of the expansion of  the solution Wh 8,n+1 of problem (8) in the basis Ur ij. 
Numerical Experiment.  Let us examine the following example from [6, p. 364]. Let fl be a square [0, 1] x [0, 1], 

f = 0, ~o(x 1, x2) = 0.0625, when (x 1 - -  0.5) 2 + (x 2 - -  0.5) 2 < (0.25) 2 (Fig. 1). 

We subdivide fl into 16 squares with sides of  the length h = 0.25. Solving (8), we f'md wh e,n+l. Solving consistent 

system (8) with n(e) --, oo, e s = 10 -2  --, 0, when s --, oo, we obtain a numerical solution w h to problem (1) if we attain the 

specified accuracy OS: 

,r  - ,r [[ ~.~  ~ o s  v s, II ~.+:c, , ,  _ ,r 11 ~'c,~ ~< o s .  

778 



TABLE I 

Number of Number of 
Error OS iterations iterations in [6] 

1 ,3 . t0  -4 

1,7" 10 -5 

1,3" 10 -6 

1,2-10 -6 

9,7 '  10 -7 

7,7-10 -7 

6,25" 10 -7 

5.6 10 -7 

45 

120 

291 

296 

313 

349 

387 

411 

100 

200 

300 

400 

500 

600 

700 

750 

jq z 

Fig. I Fig. 2 

The solution obtained by the given method was compared with the solution reported in [6] at control points denoted by x 's  in 

Fig. 1. The difference in the values extends no further than the third decimal place. Table I compares the number of iterations 

needed to achieve the prescribed accuracy OS. The results demonstrate the effectiveness of the algorithm. 

We used the proposed method to solve several numerical problems on the behavior of a square elastic plate coming 

into contact with a rigid obstacle. The plate was fixed at the edges. 

After finding the normal deflection w of the plate, we can determine a series of geometric and mechanical 

characteristics of the given system. For example, we can find the unknown region of contact of the plate and the obstacle. The 

contact forces are calculated from the relation 

= lira e-l[3(w'). (9) 

With allowance for the symmetry of the problem, the bending moments mij (i, j = 1, 2) are given by the equation. 

/ 
0 l §  

~,n2: ) - ~ 0 

As before, let fl be a unit square [0, 1] x [0, 1]. For simplicity, we put f = 0 and we determine the shape of  the obstacle in 

the form 
~(x,, x2) = R, (x~ - 0.5) 2 + (x 2 - 0.5) 2 ~ (0.25)2, 

where R = const > 0. Then the contact region will consist of  a circle 

(x 1 _ 0,5)2 + (x 2 _ 0.5)2 = (0.25)2. (10) 

Thus, the contact forces are equal to zero everywhere in f~ and are determined by relation (9) on the circle (10). 

Let us now examine the dependence of the deflection, contact forces, and bending moments on the load - -  which in 

our case is determined by the constant R. To do this, we fred the values of the above quantities at the nodes of  the mesh we 

have constructed. For simplicity, we limk ourselves to finding one moment m12. Figure 2 (lines 1-3) shows graphs of the 

functions [ ~ [ .103, max [ m12 [ .10, max [ w I �9 The x 's  and circles represent values of the corresponding characteristics 
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obtained in the numerical calculations. The approximating lines indicate the linear changes in the deflections, contact forces, 
and moments in relation to the changes in the load presented by the obstacle. 
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